

Toxics Emissions Inventory: Comparison with Ambient Measurements

David Fairley, Ph.D.

Bay Area Air Quality Management District

CARE Task Force Meeting

October 31, 2006

Goals

Determine the extent that inventory emissions match ambient measurements:

- For a given site:
 - → Do the percentages of different compounds match?
 - → Do the percentages of risk match?
- For a given toxic compound Do the sites with the highest inventory estimates match the highest ambient measurements?

Ambient Measurements

- BAAQMD lab measurements: 15 sites
- CARB lab measurements: 5 sites
- Measurements made on a 1-in-12 day schedule
- Data for 1999-2001 used
- Quarterly averaged annual averages

Toxics Emission Inventory Comparison

Total emissions =

on-road + area + point source

• Compared with 2x2 km grid square containing monitoring station:

• Also compared with the 3x3 square of grids centered on the monitoring station:

Ambient VOC Toxic Concentrations vs. 3x3 Emissions: Livermore

Ambient VOC Toxic Concentrations vs. Emissions: Crockett

How well do the emissions inventory and ambient measurements compare?

Overlap:

→ The percent of the pie that's common to both pies.

Here's an example:

Overlap Example Livermore (85% overlap)

Percent Overlap Between Ambient Concentrations and Emissions

VOCs, excluding EDB, EDC and VC

Cancer Risk Comparison

- Comparing fractions of lifetime cancer risk from various toxics
- VOCs, chromium VI, diesel PM
 - need to estimate diesel concentrations
- ARB measurements used
 - **→** they include formaldehyde, acetaldehyde, and chromium VI
 - →1,3-butadiene better estimated

Estimating Diesel PM Concentrations

- No direct way to measure diesel PM
- Elemental carbon concentrations* are a good first approximation (Fujita)
- Coefficient of Haze (COH) reasonably well correlated with EC. (Used regression equation of EC on COH with San Francisco data.)

^{*} Using the IMPROVE methodology

AIR QUALITY Cancer Risk: Emissions vs. Ambient MANAGEMENT

San Jose

DISTRICT

Ambient Total Concentrations **Emissions** Category 1,3 Butadiene Benzene Carbon Tetrachloride Chloroform Methylene Chloride **MTBE** Perchloroethylene Trichloroethylene Formaldehyde Acetaldehyde Diesel Chrome VI Other

AIR QUALITY Cancer Risk: Emissions vs. Ambient DISTRICT Concord

AIR QUALITY Cancer Risk: Emissions vs. Ambient DISTRICT Fremont

AIR QUALITY Cancer Risk: Emissions vs. Ambient DISTRICT San Francisco

Cancer Risk: Emissions Categories vs. Ambient for San Jose

Risk Comparison Summary

- Good match between ambient and emissions risk estimates
 - → Diesel by far the greatest risk, followed by benzene and 1,3-butadiene
 - → Risk overlap from 79% to 92%
- Emissions inventory diesel risk somewhat greater than ambient

Risk Uncertainties

- Risks from wood-burning, cooking, and gasoline PM emissions may also have aggregate risks greater than the sum of the individual component risks, as with diesel.
- There may be compounds with significant risk that are not yet recognized.
- There are considerable uncertainties in diesel concentrations. BAAQMD now measures EC at a number of sites.
- A sensitivity analysis shows that omitted compounds Ethylene Dibromide, Ethylene Dichloride and Vinyl Chloride could represent a small increase in risk (at most 5% to 7%).

Spatial Correlations

• For a given toxic compound:

Comparison between emissions inventory at various sites with annual average measurements at those sites.

Benzene: Ambient Concentrations vs. Emissions across sites

Perchloroethylene: Ambient

Management oncentrations vs. Emissions across sites

DISTRICT

Diesel: Ambient Concentrations vs. Emissions across sites

Spatial Summary

- Modest correlations across sites for a given toxic
- → Doesn't imply problem with inventory monitors measure concentrations at a point; inventory estimates are an average over 2x2 km grid. Prevailing winds or localized conditions can make the two different.
- → Not a large variation across sites for most toxics.

Summary & Conclusions

- Good agreement between emissions fractions and ambient concentrations at most sites.
- Good agreement between risk components based on emissions and those based on ambient concentrations.
- Diesel emissions may be overestimated. Might be a problem with the area source inventory, perhaps construction equipment.
- Modest correlations across sites for given toxics.
- Need to do more than look at emission totals in 2x2km cells to estimate community-level exposures. (Phase II)

Measurement Issues

- Many measurements below limits of detection (LOD)
- In forming averages, used ½ LOD for observations < LOD
- BAAQMD and ARB LODs sometimes different
- Set of toxics measured by BAAQMD and ARB labs somewhat different
- Carbon Tetrachloride special case (mainly background)

Summary of BAAQMD Toxics Measurements

- Means little affected by LOD:
 Benzene, MTBE, Perchloroethylene, 1,1,1-Trichloroethane, and Toluene
- Means affected by LOD (but still included in comparison):
 1,3-Butadiene, Chloroform, Methylene Chloride, and Trichloroethylene
- Excluded because 100% below LOD:
 Ethylene Dibromide, Ethylene Dichloride, and Vinyl Chloride
- Excluded (except for risk calculations) because sources overwhelmingly background:
 - **Carbon Tetrachloride**

Mean Ambient Benzene Concentrations 1999-2001

Mean Ambient Carbon Tet. Concentrations 1999-2001

Estimated Average Diesel Concentrations 1999-2001 using EC and COH

(Error bars don't include error in converting EC to diesel)

Diesel Risk Fraction: Emissions vs. Ambient

